Data-Processing: Pooling Information Theory and Signal Processing into Networks

Alejandro Cohen

From theory to practice and back using information theory and signal processing

Contents <u>Information</u> - <u>Processing</u> <u>Information</u> Theory Signal <u>Processing</u> Networks

Why do we need Information-Processing?

Large volume of analog and digital data

Contents Information - Processing Information Theory Signal Processing Networks

Why do we need Information-Processing?

Large volume of analog and digital data

Large volume of data

challenges

- Data across different locations
- Real-time delivery
- Computation and tasks
- Security

Data-Rate/Computation

Considering new applications, it becomes challenging to close/bridge the trade-off between data-rate/computation and in-order delivery delay!

Contents Information - Processing Information Theory Signal Processing Networks

Why do we need Information-Processing?

Large volume of analog and digital data

Contents **Information - Processing** Information Theory Signal Processing **Networks**

Why do we need Information-Processing?

Joint efficient solutions which consider the available resources and the specific application

Large volume of analog and digital data

Information - Processing Information Theory Signal Processing ABC C Networks

Reliable Data Acquisition

Data Acquisition for Tasks

Reliable Data Acquisition

Reliable Data Acquisition

Reliable Data Acquisition

Serial Quantization for Representing Sparse Signals

Serial Quantization for Representing Sparse Signals

How to Distribute Computation in Networks

Serial Quantization for Representing Sparse Signals

How to Distribute Computation in Networks

Stragglers-Aware Low-Latency Synchronous Federated Learning

Serial Quantization for Representing Sparse Signals

Encoder

Computational

Inputs

Time Distributed Workers

How to Distribute Computation in Networks

Stragglers-Aware Low-Latency Synchronous Federated Learning

Stream Iterative Distributed Coded Computing for Learning Applications

Master Node

Decoder

Computational

Outputs

Post-Quantum Security

	Ind. Sec. Code	HUNCC	McEliece Cryp.
Encrypted paths	0	c	l
Information rate	$R_{IS} = 1$	$(cR_C + (l-c)R_{IS})/l$	$R_C < 1$
Public-key size	0	p_C	p_C
Ind. comp. secrecy	0	$\min\{c,1\}\cdot b$	b
Ind. secrecy	(l-w)/l	(l-w)/l	0

^{*} In the original McEliece Cryptosystem the rate $R_C \approx 0.5$

Research directions:

- Design efficient data acquisition methods for tasks
- Characterize fundamental limits and provide practical reliable solutions for delay and datarate/computation guarantee
- Provide security and privacy in advanced data acquisition systems
- Understanding the tradeoffs between computation and communication
- Limits of adaptive sampling and compression
- Novel approaches to extract data from noise

Why do we need Information-Processing?