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Large volume of data

challenges
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DATA

e Data across different locations

* Real-time delivery

 Computation and tasks

* Security




Data-Rate/Computation

§7 2nd In-order Delay challenges

Throughput

Considering new applications, it becomes challenging to close/bridge the
trade-off between data-rate/computation and in-order delivery delay!
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Why do we need Information-Processing?

Joint efficient solutions which consider the available
resources and the specific application
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Reliable Data Acquisition
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Data Acquisition for Tasks
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Reliable Data Acquisition
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Reliable Data Acquisition
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Reliable Data Acquisition
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Reliable Data Acquisition
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Data Acquisition for Tasks

Distributed encoders Network Centralized decoder
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. How to Distribute Computation
Data Acquisition for Tasks in Networks

The destination needs a
function of the data

Distributed encoders Network Centralized decoder
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Serial Quantization for
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Computation can
performed in
intermediate nodes




Data Acquisition for Tasks

Distributed encoders Network Centralized decoder
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How to Distribute Computation
in Networks

The destination needs a
function of the data

Computation can
performed in
intermediate nodes

Stragglers-Aware Low-Latency Synchronous
Federated Learning
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How to Distribute Computation

Data Acquisition for Tasks in Networks
Sources are correlated
The destination needs a
function of the data

Centralized decoder

Distributed encoders Network
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Post-Quantum Security
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Individual Security Hybrid Scheme McEliece Cryptosystem
Ind. Sec. Code HUNCC McEliece Cryp.
Encrypted paths 0 c [
Information rate Ris=1 (cRc + (I — ¢)Rys) /1 Re <1
Public-key size 0 Po P
Ind. comp. secrecy 0 min{c, 1} - b b
Ind. secrecy (I —w)/l (I —w)/l 0

*In the original McEliece Cryptosystem the rate R = 0.5



Research directions:

e Design efficient data acquisition methods for tasks

* Characterize fundamental limits and provide
practical reliable solutions for delay and data-
rate/computation guarantee

Questions?

* Provide security and privacy in advanced data
acquisition systems

Information Theory Signal Processing

* Understanding the tradeoffs between
computation and communication

e Limits of adaptive sampling and compression

* Novel approaches to extract data from noise

Networks

Email: alecohen@technion.ac.il Why do we need Information-Processing?
Room 655, Meyer Building

https://sites.google.com/view/alejandrocohen/
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