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2014 Was a Wonderful Year

2Michael Elad
The Computer-Science Department 
The Technion

… for generative AI

❑ VAE: Kingma & Welling introduced Variational Auto-Encoders

❑ GAN: Goodfellow, ... Courville & Bengio, presented Generative Adversarial Networks

❑ NF: Dinh, Krueger & Bengio brought Normalizing Flow

❑ RNN: Alex Graves presented Recurrent Neural Networks (a.k.a. Auto-Regressive models)

❑ EBM: Rezende et Al. harnessed successfully energy-machines for challenging tasks

❑ Diffusion: Sohl-Dickstein et Al. offered the very first version of Diffusion Models

Common to all is the desire to learn (through many examples) a synthesis machine

ොx = Gθ z  ,  z~ℕ(0, 𝐈)

that can sample fairly from complex distributions P x



Generative AI
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Wikipedia: Generative artificial intelligence (generative AI) is artificial intelligence capable 
of generating text, images, or other media, using generative models

Gen-AI has two main and separate branches:

Text/Code Synthesis Image/Video/Audio Synthesis 

At the lead: 
Autoregressive 
Models

At the lead: 
Diffusion 

Models

A very recent trend: 
Using Diffusion 

Models for LLM’s



This Talk is all About  
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Our recent work on … 

Diffusion Models
Agenda:
1. Introduction to Diffusion Models

2. Diffusion Models as Posterior Samplers

3. Posterior-Sampling based Compression (PSC)

4. Conclusion
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At the Center of Our Story … 

Image Denoisers

For cleaning White Additive Gaussian Noise from an Image 
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At the Center of Our Story … 

MMSE Image Denoising: a Solved Problem !!
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Original   Noisy        Denoised

Original       Noisy        Denoised



Image Synthesis via Denoisers
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Question: Given a denoiser D y, σ
how can one synthesize images with it? 

Answer: Use D y, σ  as a Projection onto the image manifold

Practical Implication: Iterated use of D ∙, σ  with varying σ

D ∙, σ1
Simple 

Operation
D ∙, σ2

Simple 
Operation

D ∙, σ3
Simple 

Operation Operation
noise
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Langevin Dynamics
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Here is the core idea in a nutshell:

❑ Our goal: draw a sample from the distribution of images P x

▪ Start with a random noise image x0

▪ Climb to a more probable image by the iterative equation:

❑ … and this way we got an iterated algorithm that keeps calling to a denoiser, and is 
guaranteed to obtain a sample from P x

This is known [Miyasawa `61] as the Score 
Function and it is approximately proportional 

to ොxk − D ොxk, σ  for a small value of σ

xk+1 = xk + a ∙ 𝛻xk
logP xk (Langevin Dynamics [1908])

This suggests an implicit relation 
between MMSE denoisers and 
Priors:  D x, σ   P x

+b ∙ zk
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Annealed Langevin Dynamics
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In practice, instead of the plain Langevin with a fixed (and 
small) value of σ we use the Annealed Langevin Algorithm 
that considers a sequence of blurred priors: 

   P x + v    for   v~ℕ 0, σk
2𝐈  

      = P x  ۪ c ∙ exp −
1

2σ2 x 2

    with   σ0 > σ1 > σ2  ⋯  > σN > 0

The core idea: start by drawing
from a wider distribution and 
gradually narrow it, leading to 
a faster sampling performance
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Text-2-Image via Diffusion Models
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Here is a taste from Google’s Imagen, in the context of Text-2-Image:
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Moving to Posterior Sampling
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❑ Goal: Recovery from corrupted measurements

 De-Noising      De-Blurring 

 In-Painting       De-Mosaicing  

 Tomography    Image Scale-Up & super-resolution

❑ Can we suggest a “sampler” from the Posterior 
P x|y  for handling these problems? 

❑ Answer: Yes! Use Langevin dynamics again, 
in an adapted form  

y = 𝐇x + n

Advances in Neural Information Processing Systems (NeurIPS)

179
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Few Results: Image Denoising 
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Few Results: Image Inpainting 
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Noisy Inpainting: A portion missing and noise with 𝜎0 ≈ 25
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Few Results: Super-Resolution
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Downscaling by 4 with additive noise of 𝜎0 ≈ 25
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Here is What We Know Now 
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From the previous discussion (and the vast work on 
these topics by other teams) it is now clear that 

Sampling images from the Posterior 
ොx~P x|y = 𝐇x + n  is within reach

Here is something quite interesting that 
we came up with just recently ….

y

x
𝐇

+=
n
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European Conference on Computer Vision (ECCV)

Noam Elata     Tomer Michaeli
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Compression Result: a Teaser
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Original JPEG

× 128

Compress



Compression Result: a Teaser
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Original

× 128

Compress

PSC (Ours)



Recall: Transform Coding 
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Entropy 
Coding 

Transform

Quantization

DecoderEncoder

x

𝐐 𝐇x

ොx

Could we construct an 
effective coding 

algorithm using an 
IMAGE-ADAPTIVE 

transform?

Image-dependent 
transform should be 
transmitted too, and 

this will ruin the 
coding performance 

Common 
coding 

schemes rely 
on a fixed 
transform

NO! So … ?
Is there a 

way 
around it

…



Features: 
• Progressive Coding 
• Image-Adaptive Transform
• Optimal Greedy Performance
• Zero-Shot (no Training)

A Novel Compression Scheme: PSC

Decoder

ym
Q

≈ 𝐇mx

Posterior 
Sampler

ොxk k=1
K ~P x|ym

Q

𝐇m

PCA

hm+𝟏
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Encoder

Posterior 
Sampler

ොxk k=1
K ~P x|ym

Q

PCA

hm+𝟏

Q

ym
Q

𝐇m ym
Q

𝐇m
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Does it Work? 
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Original BPG HiFiC PSC (Ours)

× 460

× 270
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Original PSC (Ours)PSC (Ours)PSC (Ours)

× 460

× 270

× 620

× 620

× 1240

× 1240



Does it Work? 
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Original

A giraffe 
grazing from 

a tree with 
rock wall in 

background

A big bowl of 
different 

kinds of fruit 
inside

LPSC (Ours)

× 156

× 156
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Original

A giraffe 
grazing from 

a tree with 
rock wall in 

background

A big bowl of 
different 

kinds of fruit 
inside

LPSC (Ours)

× 312

× 312



Does it Work? 
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Original

A giraffe 
grazing from 

a tree with 
rock wall in 

background

A big bowl of 
different 

kinds of fruit 
inside

LPSC (Ours)

× 624

× 624
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Diffusion 
Models (DM) 

have taken 
the lead 

in handling 
various 

Generative 
AI tasks

Summary
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DM can be 
“easily” 

adapted to 
become 
reliable 

posterior 
samplers 
for linear 
sensing

As such, 
posterior 
samplers 

can be 
harnessed 
to address 

adaptive CS –
AdaSense is 

such a 
method

AdaSense is 
shown to  

be the 
foundation 

for PSC: 
a novel and 
competitive 

lossy 
compression 

scheme

More broadly, 
Diffusion 
Models 

expose new 
opportunities 
for revisiting 
the topic of 

Lossy 
compression 

schemes



Thank You 

David Malah

… and Team (Past and Present): 
Yoram Or-Chen, Nimrod Peleg, Ziva Avni, Avi Rozen, Yair Moshe, Ori Bryt …



Image Synthesis
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❑ In the past decade, the AI revolution brought a growing 
interest in synthesizing images “out of thin air”

❑ Popular tools: VAE, GAN, NF, AR, EBM, Diffusion

❑ The essence of this synthesis task: 
Sampling from P x

❑ Why synthesize? Because 
▪ We can, and it is fascinating 
▪ This can be leveraged for practical needs (compression, restoration)

❑ Key question: Could we 
sample images from P x  
by using an image denoiser?
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Surely, You Have Heard of …
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Comment: OpenAI have just released an image generator within 
GPT-4o, relying on an Auto-Regressive model! 

 However, if you check carefully, it uses a diffusion 
model to finalize the created images



Latent-Based PSC with Text-2-Image 
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Does it Work? 
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PSC has two options for the 
output: 

• A sample – targeting 
perceptual quality

• An average of all samples 
– targeting distortion 

BPG (2014): Better Portable 
Graphics, a high-end 
replacement to JPEG based 
on HEVC

HiFiC (2020): Google-
Research based deep 
learning compression
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