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The ones who truly make this research matter



The ML revolution: a tension between potential & risks

True diagnosis = ?

normal / concussion / cancer / …
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The ML revolution: a tension between potential & risks

Can I trust 
this?

• Black-box effect: hard to interpret

• Deployment issues: unpredictable behavior, test-time failures

• Low-quality training data: inaccurate labels, missing labels, synthetic, …

Prediction: normal

Predictive model
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Unprecedented need to build confidence in ML systems
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Unprecedented need to build confidence in ML predictions

✓  Under finite samples

✓  Any data: distribution-free

✓  Any black-box

Overarching goal
put precise error bounds on ML predictions, 

honestly reporting what can be inferred from data

How?
Novel protection tools that leverage black-box algorithms

and guarantee their reliability

Novel approach 
Revealing a unique interplay between statistics and ML

Data

Prediction layer
(Machine Learning)

Protection layer
(statistical testing)
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Safe Outcome



Real-world application of our statistical wrapper [CQR, Romano et al. (’19)]

• The Washington Post used our method to reliably project the 2020 US election results 

Election night model results
(4 November 2020, 11:50 PM CA Time)

Where the votes could end up

Prediction
Interval
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• The Washington Post used our method to reliably project the 2020 US election results 

• Same for the 2024 US election night, with enhanced technology [Cherian, Bronner, and Candes (‘24)] 

Real-world application of our statistical wrapper [CQR, Romano et al. (’19)]

Election night model results
(6 November 2024, 6:00 AM ISR Time)

Prediction
Interval
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𝑋𝑖 , 𝑌𝑖 𝑖=1

𝑛  

features label
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Standard conformal prediction: key idea

Calibrate
a heuristic notion of 

prediction error 

Predictive model
(black-box)

Holdout calibration data

i.i.d. labeled samples 
𝑋𝑖 , 𝑌𝑖 𝑖=1

𝑛  

features label

Naïve prediction

෠𝑌test = normal 

𝑋test

.
𝐶(𝑋test)

Prediction interval
for a test point

(𝑋test, 𝑌test = ? )

Test time inference
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Standard conformal prediction: key idea

Holdout calibration data

i.i.d. labeled samples 
𝑋𝑖 , 𝑌𝑖 𝑖=1

𝑛  

Calibrate
a heuristic notion of 

prediction error 

Predictive model
(black-box)

features label

Prediction set 

𝐶 𝑋test = normal,concussion

𝑋test

.
𝐶(𝑋test)

Prediction interval
for a test point

(𝑋test, 𝑌test = ? )

Test time inference
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Standard conformal prediction: key idea

✓ The prediction set is guaranteed to cover the unseen test label w.h.p:

ℙ 𝑌test ∈ 𝐶(𝑋test) ≥ 1 − 𝛼 (e. g.  95%)

Limitations
✗ Holds under the i.i.d. assumption (holdout/test)

✗ Holds marginally over the population represented by the holdout data

Holdout calibration data

i.i.d. labeled samples 
𝑋𝑖 , 𝑌𝑖 𝑖=1

𝑛  

Calibrate 
a heuristic notion of 

prediction error 

Predictive model
(black-box)

features label

.
𝐶(𝑋test)

Prediction interval
for a test point

(𝑋test, 𝑌test = ? )

Test time inference
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Research landscape: reliable predictive inference

Challenge 1: limited availability of labeled data
Q1: how to achieve more personalized 
        safety guarantees?
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This (overview) talk

Challenge 1: limited availability of labeled data
Q1: how to achieve more personalized 
        safety guarantees?

Challenge 2: violation of the i.i.d. assumption
Q2: how to ensure reliability when handed 
        low-quality holdout data?

Challenge 3: lack of up-to-date labels
Q3: how to enhance robustness to test-time 
        drifting data in an online manner?
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More personalized safety guarantees

Want valid UQ regardless of age, race, ethnicity, …
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Fundamental sample size limitation

(Data: ImageNet; Model: VLM)



Recent breakthroughs in generative AI

• GenAI unlocks the ability to generate realistic images, text, …

• Unlocks the ability to fit more accurate, personalized models
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Recent breakthroughs in generative AI

• GenAI unlocks the ability to generate realistic images, text, …

• Unlocks the ability to fit more accurate, personalized models

• Problem: we can’t blindly trust synthetic data: biased, introducing unknown & undesired dist. shifts
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How can we safely use synthetic data while achieving personalized reliability guarantees?



Our method: synthetic-powered predictive inference [BLLDR (’25)]
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Our method: synthetic-powered predictive inference [BLLDR (’25)]

21

Limited real data

Predictive model
(black-box)

Abundant
synthetic data

𝑇( )

real
pred. errors

synthetic 
pred. errors

model calibration
on the real-to-synthetic
transported pred. errors

.
Theorem

✓ Valid coverage (no matter how good GenAI is)

✓ High-quality synthetic data? accurate 

calibration, breaking sample-size barriers



Our method in action: ImageNet (VLM + Stable Diffusion)
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Real (15 pts.) Synthetic (1,000 pts.)

Test set (unlabeled)



Our method in action: marginal coverage
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Our method in action: class (=bike) conditional coverage
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Our method in action: class (=bike) conditional coverage
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A historical perspective

29

Samuel S. Wilks (1906-1964)

Q. How many samples do we need to obtain a stable prediction 
     interval for a quality characteristic of a product?

A. About 1,000 (real) samples

The Annals of Mathematical Statistics, March 1941



A historical perspective
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Samuel S. Wilks (1906-1964)

Q. How many samples do we need to obtain a stable prediction 
     interval for a quality characteristic of a product?

A. About 1,000 (real) samples

Fast forward to 2025… we have a new result!

Can break this sample size limit and obtain stable pred. intervals via synthetic data

The Annals of Mathematical Statistics, March 1941



Time to conclude

Our focus

Supporting black-box ML systems with 
formal safety guarantees

• Personalization
• Robustness
• Online adaptation
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Time to conclude

Social impact

Trustworthy data-driven insights, extracted from the 
most advanced ML systems

Thank you!

Research horizons

• Stat empowers ML and ML empowers Stat
• Integrate protection layers within ML training

Our focus

Supporting black-box ML systems with 
formal safety guarantees

• Personalization
• Robustness
• Online adaptation
  

31
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