Speech, Language and Al Lab

Yossi Keshet

May 12, 2024

Outline

- The Lab
- Speech synthesis:
 - DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generator
 - Spectral analysis of diffusion models
 - SclaerGAN
- Speech recognition and processing
 - Self-supervised Speaker Diarization
 - Keyword spotting

DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generator

Diffusion models

Forward Markovian process (fixed)

$$\chi_0 \longrightarrow \chi_1 \longrightarrow \chi_2 \qquad \dots \qquad \longrightarrow \chi_T$$

Reverse Markovian process (trainable)

Autoregressive approach

Decompose the original problem into sub-problems

Taking advantage of the temporal behavior of the audio signal

Given that we want to produce a long signal of length L

"I am a very long signal"

→ time

Autoregressive approach

Decompose the original problem into sub-problems

Taking advantage of the temporal behavior of the audio signal

Given that we want to produce a long signal of length L

Step 1 - Breaking down the whole signal into many small frames.

Each couple of adjacent frames are overlapping each other.

Step 2 - Generating each frame separately.

Autoregressive approach

Decompose the original problem into sub-problems

Taking advantage of the temporal behavior of the audio signal

Given that we want to produce a long signal of length L

Step 1 - Breaking down the whole signal into many small frames.

Each couple of adjacent frames are overlapping each other.

Step 2 - Generating each frame separately.

Generating each frame is conditioned on a portion of the previously generated one

How can it be formulated?

Modeling

Modeling

Training procedure:

$$\mathcal{L}_s = \mathbb{E}_{\mathbf{x}_0^l, oldsymbol{\epsilon}_s} \left[\left\| oldsymbol{\epsilon}_{ heta} \left(\sqrt{ar{lpha}_s} \mathbf{x}_0^l + \sqrt{1 - ar{lpha}_s} oldsymbol{\epsilon}_s, \mathbf{H} \mathbf{x}^{l-1}, \mathbf{y}^l, s
ight) - oldsymbol{\epsilon}_s
ight\|^2
ight]$$

Inpainting problem:

Sampling procedure:

$$\begin{array}{c} Hx^{l-1} \\ x_S^l \\ \end{array}$$
 Denoiser ϵ_{θ}

$$\mathbf{x}_{s}^{l} = \frac{1}{\sqrt{\bar{\alpha}_{s}}} \left(\mathbf{x}_{s+1}^{l} - \frac{1 - \alpha_{s}}{\sqrt{1 - \bar{\alpha}_{s}}} \boldsymbol{\epsilon}_{\theta} \left(\mathbf{x}_{s+1}^{l}, \mathbf{H} \hat{\mathbf{x}}^{l-1}, \mathbf{y}^{l}, s \right) \right) + \sigma_{s} \mathbf{z}_{s} ,$$

→ time

Original audio

conditioned audio

generated audio

conditioned phonemes

Examples

which had come to rest on a stack of paper.

An examination of certain construction work appearing in the background of this photograph revealed that the picture was taken between March 8

Personal relations

which carry the major responsibility for supplying information about potential threats

who seldom let a session go by without visiting Newgate.

Evaluation

Method	↑MOS	↑MOS scaled	↑MUSHRA	↓CER(%)	↓WER(%)
Ground truth	3.98 ± 0.08	4.70 ± 0.09	71.2 ± 2.0	0.89	2.13
WaveGrad 2	3.61 ± 0.09	4.26 ± 0.10	63.8 ± 2.3	3.47	5.75
DiffAR (200 steps)	3.75 ± 0.08	4.43 ± 0.10	65.7 ± 2.2	2.67	6.16
DiffAR (1000 steps)	3.77 ± 0.08	$\textbf{4.45} \pm \textbf{0.09}$	$\textbf{66.7} \pm \textbf{2.2}$	1.95	4.65

Table 4: VITS (Kim et al., 2021)

Table 5: Grad-TTS (Popov et al., 2021)

Method	↑MUSHRA	Method	↑MUSHRA
Ground truth DiffAR (200 steps) DiffAR (1000 steps) VITS	$74.9 \pm 2.2 \\ 69.1 \pm 2.2 \\ \textbf{71.5} \pm \textbf{2.2} \\ 69.0 \pm 2.3$	Ground truth DiffAR (200 steps) DiffAR (1000 steps) Grad-TTS	73.7 ± 2.4 69.4 ± 2.5 67.7 ± 2.6 68.5 ± 2.5

Table 6: ProDiff (Huang et al., 2022b)

Table 7: DiffGAN-TTS (Liu et al., 2022)

Method	↑MUSHRA	Method	↑MUSHRA
Ground truth DiffAR (200 steps) DiffAR (1000 steps) ProDiff	70.0 ± 2.1 66.6 ± 2.4 67.5 ± 2.3 64.6 ± 2.4	Ground truth DiffAR (200 steps) DiffAR (1000 steps) DiffGAN-TTS	71.2 ± 2.0 69.5 ± 2.1 68.4 ± 2.2 68.0 ± 2.2

Innovativeness

Original audio

Synthesized audio

Innovativeness

Original audio

Synthesized audio

Spectral Analysis of Diffusion Models

Next: Long Inpainting

Next: Long Inpainting

Diffusion Process and Frequencies

Intriguing properties of synthetic images: from generative adversarial networks to diffusion models

Riccardo Corvi¹ Davide Cozzolino¹ Giovanni Poggi¹ Koki Nagano² Luisa Verdoliva¹

¹University Federico II of Naples ² NVIDIA

Diffusion Probabilistic Model Made Slim

Xingyi Yang¹ Daquan Zhou² Jiashi Feng² Xinchao Wang¹ National University of Singapore¹ ByteDance Inc.²

TIME SERIES DIFFUSION IN THE FREQUENCY DOMAIN

Jonathan Crabbé, Nicolas Huynh, Jan Stanczuk, Mihaela van der Schaar
DAMTP
University of Cambridge

Figure 6. Radial spectrum power density. Synthetic images are compared with the real images used for training the correspondent model. Real images (green) fit very well the expected theoretical curve (dotted).

Spectral Analysis for Diffusion Models

Goal

- Analyze the diffusion model's inference process through a comprehensive frequency response perspective.
- Explore the possibility of identifying a frequency-domain frequency response the diffusion process.

The Challenge

How to separate the diffusion process from a specific denoiser

The frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency.

Method

- Assume a multivariate Gaussian input and derive the optimal denoiser analytically.
- Investigating various setups, including DDPM, DDIM, variance-preserving, variance-exploding, along with the selection of loss functions and additional features like expectancy drift.

Spectral Analysis for Diffusion Models

Application: Designing Noise Scheduling

- Connection between the noise schedule and the frequency-domain phenomena
- Formulating an optimization problem to determine the optimal noise schedule that aligns with the dataset's characteristics and evaluating it against existing heuristics.

The Error of Each Frequency (Eigenvalue)

Time-scale modification of speech

Analysis: more data

Table 2: Analysis of model performance on the TIMIT and Buckeye test sets before and after augmenting them with examples from Librispeech.

Training set	Test set	P	R	F1	R-val
TIMIT	TIMIT	83.89	83.55	83.71	86.02
TIMIT+	TIMIT	84.11	84.17	84.13	86.40
Buckeye	Buckeye	75.78	76.86	76.31	79.69
Buckeye+	Buckeye	74.92	79.41	77.09	79.82

Gene-Ping Yang

1

Anton Ragni

%

Herman Kamper

1

down-sampling by simple decimation r=1.5

professional tool (Élastique)

down-sampling by simple decimation r=0.5

professional tool (Élastique)

our deep learning model

Training

Training

Inference

Empirical evaluation

Aggregation by method

PhaseVocoder (Laroche & Dolson, 1999), ESOLA (Rudresh et al. 2018), FESOLA (Roberts & Paliwal, 2019), WSOLA (Verhelst & Roelands, 1993), IPL (Laroche & Dolson, 1999), Phavorit IPL (Karrer et al., 2006), SPL (Laroche & Dolson, 1999), Phavorit SPL (Karrer et al., 2006), Élastique, HPTSM (Driedger et al., 2013), and µTVS (Sharma et al., 2017).

Empirical evaluation

Aggregation by rate

PhaseVocoder (Laroche & Dolson, 1999), ESOLA (Rudresh et al. 2018), FESOLA (Roberts & Paliwal, 2019), WSOLA (Verhelst & Roelands, 1993), IPL (Laroche & Dolson, 1999), Phavorit IPL (Karrer et al., 2006), SPL (Laroche & Dolson, 1999), Phavorit SPL (Karrer et al., 2006), Élastique, HPTSM (Driedger et al., 2013), and µTVS (Sharma et al., 2017).

Self-Supervised Speaker Diarization

Speaker diarization: Who spoke when?

Speaker diarization: Who spoke when?

Goal

Propose a complete pipeline for speaker diarization training with no annotated data.

Speaker embedding

- Proposed: Contrastive learning.
 - Learn a metric by which positive pairs are similar and negative pairs are dissimilar. \pause
 - Positive pairs: Assume close frames are of the same speaker.
 - Negative pairs: Assume frames from different files are of different speakers.

- Problem: Using different files can introduce unwanted learned artifacts such as acoustic environment.
- Solution: use only positive examples.

Speaker embedding

Our self-supervised loss function is $L_{BT}(\mathbf{Z}_t, \mathbf{Z}_\tau) = \|\mathbf{R}_{\mathbf{Z}_t \mathbf{Z}_\tau} - \mathbf{I}\|_{\mathcal{F}}^2$ makes the cross-correlation matrix as close as possible to the identity matrix

Cross-correlation matrix between the two embeddings: $\mathbf{R}_{\mathbf{Z}_t\mathbf{Z}_{\tau}} = \mathbb{E}\left[\mathbf{z}_t^{\top}\mathbf{z}_{\tau}\right]$

CNN-based encoder: $\mathbf{z}_t = f_{\theta}(\mathbf{x}_t)$ $\mathbf{z}_{\tau} = f_{\theta}(\mathbf{x}_{\tau})$

We work on two raw waveform segment of T samples:

$$\mathbf{x}_t = (x_{t-T}, x_{t-T+1}, \dots, x_{t+T-1})$$
 $\mathbf{x}_\tau = (x_{\tau-T}, \dots, x_{\tau+T-1})$

Inspired by Barlow Twins (Zbontar, Jing, Misra, LeCun, and Deny, 2021) and VICReg (Bardes, Ponce, and LeCun, 2021).

Speaker embedding

The more data the better the embeddings:

Empirical evaluation

Diarization error rate (DER) in % on the test set of CallHome compared with recent SOTA supervised works

Model	DER
UIS-RNN V1 [25]	10.6
UIS-RNN V2 [25]	9.6
UIS-RNN V3 [25]	7.6
x-vector + LSTM (oracle VAD) [5]	6.6
DIVE [17]	5.9
Ours (unsupervised, oracle VAD)	6.6
Ours (unsupervised)	9.1

Keyword Spotting and Automatic Speech Recognition

aiOla KWS Demo English aiOla & OpenAl Whisper Word Error Rate: **Keyword List** OpenAl Whisper Word Error Rate: 4 **Original Text** The patient is taking the following medications: Levetiracetam, SGLT2 Inhibitors, Isavuconazonium Compare Sulfate and Artemether. He is also having trouble with his blood pressure and will need to be prescribed

	aiOla's Jargonic V2 Demo	Japanese v iii
aiOla		
Execution Time:		Word Error Rate:
aiOla Keyword Spotting:		
Cloud ASR		
Execution Time:		Word Error Rate:
Original Text		
モーターに問題があります。以下 電圧・電流・周波数を計測しまし	下は圧力と温度の値で 期待される範囲から外れています した。	Compare

Thanks!